Mind-Craft: Exploring the Effect of Digital Visual Experience on Changes to Orientation Sensitivity in Visual Contour Perception


Visual perception depends fundamentally on statistical regularities in the environment to make sense of the world. One such regularity is the orientation anisotropy typical of natural scenes; most natural scenes contain slightly more canonical (horizontal and vertical) information than oblique information. This property is likely a primary cause of the oblique effect in which subjects experience greater perceptual fluency with horizontally and vertically oriented content than oblique. Recent changes in the visual environment, including the “carpentered” content in urban scenes and the framed, caricatured content in digital screen media presentations, may have altered the typical (natural) level of orientation anisotropy. The current work evaluated whether digital visual experience, or visual experience with framed digital content, has the potential to alter the magnitude of the oblique effect in visual perception. Experiment 1 successfully established a novel eye-tracking method capable of indexing the visual oblique effect quickly and reliably and demonstrated the oblique effect. Experiment 2 used this method and found that one session of exposure to a specific video game altered visual orientation perception. Taken together, these results indicate that exposure to the realistic, but caricatured scene statistics of digital screen media, can alter visual contour perception in one session.

Read the Research



Alter, A. L., Oppenheimer, D. M. (2009). Uniting the tribes of fluency to form a metacognitive nation. Personality and Social Psychology Review, 13, 219–235.

Angelucci, A., Levitt, J. B., Walton, E. J., Hupe, J. M., Bullier, J., Lund, J. S. (2002). Circuits for local and global signal integration in primary visual cortex. Journal of Neuroscience, 22, 8633–8646.

Annis, R. C., Frost, B. (1973). Human visual ecology and orientation anisotropies in acuity. Science, 182, 729–731.

Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: The “oblique effect” in man and animals. Psychological Bulletin, 78, 266.

Awh, E., Belopolsky, A. V., Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443.

Baddeley, R. J., & Hancock, P. J. B. (1991). A statistical analysis of natural images matches psychophysically derived orientation tuning curves. Proceedings of the Royal Society of London, Series B, 246, 219–223.

Bao, M., Engel, S. A. (2012). Distinct mechanism for long-term contrast adaptation. Proceedings of the National Academy of Sciences, 109, 5898–5903.

Bao, M., Engel, S. A. (2019). Augmented reality as a tool for studying visual plasticity: 2009 to 2018. Current Directions in Psychological Science, 28, 574–580.

Bates, D., Sarkar, D. (2006). The lme4 package. http://cran.r-Project.org

Ben-Yishai, R., Bar-Or, R. L., Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences, 92, 3844–3848.

Bonte, M. (1962). The reaction of two African societies to the Müller-Lyer illusion. The Journal of Social Psychology, 58, 265–268.

Bosking, W. H., Zhang, Y., Schofield, B., Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. The Journal of Neuroscience, 17, 2112–2127.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

Callaway, E. M., Katz, L. C. (1991). Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex. Proceedings of the National Academy of Sciences, 88, 745–749.

Campbell, F. W., Kulikowski, J. J., Levinson, J. (1966). The effect of orientation on the visual resolution of gratings. The Journal of Physiology, 187, 427–436.

Cass, J. R., Spehar, B. (2005). Dynamics of collinear contrast facilitation are consistent with long-range horizontal striate transmission. Vision Research, 45, 2728–2739.

Coppola, D. M., Purves, H. R., McCoy, A. M., Purves, D. (1998). The distribution of oriented contours in the real world. Proceedings of the National Academy of Sciences of the USA, 95, 4002–4006.

Council for Research Excellence. (2009). The Council for Research Excellence video consumer mapping study. www.researchexcellence.com

Demeyer, M., Machilsen, B. (2012). The construction of perceptual grouping displays using GERT. Behavior Research Methods, 44, 439–446.

Dixon, P. (2008). Models of accuracy in repeated-measures designs. Journal of Memory and Language, 59, 447–456.

Dye, M. W., Green, C. S., Bavelier, D. (2009). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18, 321–326.

Essock, E. A., Haun, A. M., Kim, Y. J. (2009). An anisotropy of orientation-tuned suppression that matches the anisotropy of typical natural scenes. Journal of Vision, 9, 35.

Fang, L. L., Bauer, J., Held, R., Gwiazda, J. (1997). The oblique effect in Chinese infants and adults. Optometry & Vision Science, 74, 816–821.

Field, D. J., Hayes, A., Hess, R. F. (1993). Contour integration by the human visual system: Evidence for a local “association field.” Vision Research, 33, 173–193.

Fox, J., Weisberg, S. (2009). Car: Companion to applied regression. R Package Version, 1, 2–14.

Furmanski, C. S., Engel, S. A. (2000). An oblique effect in human primary visual cortex. Nature Neuroscience, 3, 535–536.

Gaspelin, N., Luck, S. J. (2018a). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology: Human Perception and Performance, 44, 626.

Gaspelin, N., Luck, S. J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22, 79–92.

Geisler, W. S., Perry, J. S., Super, B. J., Gallogly, D. P. (2001). Edge co-occurrence in natural images predicts contour grouping performance. Vision Research, 41, 711–724.

Gerhardstein, P., Tse, J., Dickerson, K., Hipp, D., Moser, A. (2012). The human visual system uses a global closure mechanism. Vision Research, 71, 18–27.

Gibson, J. J. (2014). The ecological approach to visual perception: Classic edition. Psychology Press.

Gitelman, D. R., Parrish, T. B., Friston, K. J., Mesulam, M. M. (2002). Functional anatomy of visual search: Regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. Neuroimage, 15, 970–982.

Green, P., MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7, 493–498.

Greenough, J. T., Black, J. E., Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539–559.

Gutfreund, Y., Knudsen, E. I. (2006). Adaptation in the auditory space map of the barn owl. Journal of Neurophysiology, 96, 813–825.

Haak, K. V., Fast, E., Bao, M., Lee, M., Engel, S. A. (2014). Four days of visual contrast deprivation reveals limits of neuronal adaptation. Current Biology, 24, 2575–2579.

Hadad, B., Maurer, D., Lewis, T. L. (2010). The effects of spatial proximity and collinearity on contour integration in adults and children. Vision Research, 50, 772–778.

Heeley, D. W., Buchanan-Smith, H. M., Cromwell, J. A., Wright, J. S. (1997). The oblique effect in orientation acuity. Vision Research, 37, 235–242.

Heeley, D. W., Timney, B. (1988). Meridional anisotropies of orientation discrimination for sine wave gratings. Vision Research, 28, 337–344.

Henrich, J., Heine, S. J., Norenzayan, A. (2010). Most people are not WEIRD. Nature, 466, 29–29.

Higgins, G. C., Stultz, K. (1950). Variation of visual acuity with various test object orientations and viewing conditions. Journal of the Optical Society of America A, 40, 135–137.

Hipp, D., Dickerson, K., Moser, A., Gerhardstein, P. (2014). Age‐related changes in visual contour integration: Implications for physiology from psychophysics. Developmental Psychobiology, 56, 1390–1405.

Hoenig, J. M., Heisey, D. M. (2001). The abuse of power: The pervasive fallacy of power calculations for data analysis. The American Statistician, 55, 19–24.

Huang, P. C., Hess, R. F., Dakin, S. C. (2006). Flank facilitation and contour integration: Different sites. Vision Research, 46, 3699–3706.

Kingstone, A., Smilek, D., Eastwood, J. D. (2008). Cognitive ethology: A new approach for studying human cognition. British Journal of Psychology, 99, 317–340.

Kohn, A. (2007). Visual adaptation: Physiology, mechanisms, and functional benefits. Journal of Neurophysiology, 97, 3155–3164.

Kovács, I., Julesz, B. (1993). A closed curve is much more than an incomplete one: Effect of closure in figure-ground segmentation. Proceedings of the National Academy of Sciences, 90, 7495–7497.

Kovacs, I., Kozma, P., Feher, A., Benedek, G. (1999). Late maturation of visual spatial integration in humans. Proceedings of the National Academy of Sciences, 96, 12204–12209.

Lev, M., Polat, U. (2011). Collinear facilitation and suppression at the periphery. Vision Research, 51, 2488–2498.

Li, B., Peterson, M. R., Freeman, R. D. (2003). Oblique effect: A neural basis in the visual cortex. Journal of Neurophysiology, 90, 204–217.

Mannion, D. J., McDonald, J. S., Clifford, C. W. (2010). Orientation anisotropies in human visual cortex. Journal of Neurophysiology, 103, 3465–3471.

Mojang. (2011). Minecraft, version 1.8. Microsoft.

Nurminen, L., Angelucci, A. (2014). Multiple components of surround modulation in primary visual cortex: Multiple neural circuits with multiple functions? Vision Research, 104, 47–56.

Perrin, A., Anderson, M. (2019). Share of U.S. adults using social media, including Facebook, is mostly unchanged since 2018. Pew Research Center.

Polat, U., Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research, 33, 993–999.

R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Reber, R., Wurtz, P., Zimmermann, T. D. (2004). Exploring “fringe” consciousness: The subjective experience of perceptual fluency and its objective bases. Consciousness and Cognition, 13, 47–60.

Rideout, V. (2015). The common sense census: Media use by tweens and teens. Commonsense Media, Inc..

Robinson, D. A. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Research, 12, 1795–1808.

Schweinhart, A. M., Essock, E. A. (2013). Structural content in paintings: Artists overregularize oriented content of paintings relative to the typical natural scene bias. Perception, 42, 1311–1332.

Schweinhart, A. M., Shafto, P., Essock, E. A. (2017). Distribution of content in recently-viewed scenes whitens perception. Journal of Vision, 17, 8.

Segall, M. H., Campbell, D. T., Herskovits, M. J. (1966). The influence of culture on visual perception (p. 184). Bobbs-Merrill.

Shani, R., Sagi, D. (2005). Eccentricity effects on lateral interactions. Vision Research, 45, 2009–2024.

Shushruth, S., Mangapathy, P., Ichida, J. M., Bressloff, P. C., Schwabe, L., Angelucci, A. (2012). Strong recurrent networks compute the orientation tuning of surround modulation in the primate primary visual cortex. Journal of Neuroscience, 32, 308–321.

Sparks, D. L. (1988). Population coding of saccadic eye movements by neurons in the superior colliculus. Nature, 332, 24.

Stettler, D. D., Das, A., Bennett, J., Gilbert, C. D. (2002). Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron, 36, 739–750.

Swing, E. L., Gentile, D. A., Anderson, C. A., Walsh, D. A. (2010). Television and video game exposure and the development of attention problems. Pediatrics, 126, 214–221.

Ts’o, D. Y., Gilbert, C. D., Wiesel, T. N. (1986). Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. The Journal of Neuroscience, 6, 1160–1170.

Wang, B., Theeuwes, J. (2018). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44, 13.

Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., Sahuc, S. (2001). Optic flow is used to control human walking. Nature Neuroscience, 4, 213–216.

Westerman, D. L., Lloyd, M. E., Miller, J. K. (2002). The attribution of perceptual fluency in recognition memory: The role of expectation. Journal of Memory and Language, 47, 607–617.

Yao, H., Shi, L., Han, F., Gao, H., Dan, Y. (2007). Rapid learning in cortical coding of visual scenes. Nature Neuroscience, 10, 772–778.